A STUDY ON RELATIONS AMONG CONSECUTIVE INTEGERS AND ITS APPLICATIONS

Md Shahidul Islam Khan,
Assistant Professor, Department of Mathematics, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga, Goalpara, India
Mazibar Rahman, Department of Mathematics, Nabajyoti College, Kalgachia, Barpeta, Assam

Abstract

In this paper, we study on relations among consecutive elements of an equivalence class of congruence modulo m for any positive integer m . If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are any three consecutive elements of an equivalence class of congruence modulo m, then $y^{2}=x z+m^{2}$. This is a very simple relation but unknown. For $m=1$, we get the relation $y^{2}=x z+1$ between any three consecutive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$. We can extend the relation to any finite number of consecutive integers. Using these relations, we prove some new results and solve quadratic congruence of odd prime modulus. Uses of this relations are the merit of this paper.

AMS Mathematics Subject Classification: 11N69, 11B39, 11A07, 11A41, 11A99.
KEY WORDS: Consecutive elements, consecutive integers, equivalence class, consecutive triples, Fibonacci's numbers, quadratic congruence.

INTRODUCTION:

Let m be a fixed positive integer. For integers a and b, we define a relation \mathfrak{R} on Z as $a \mathfrak{R} b \Leftrightarrow a \equiv b(\bmod m)$. Then \mathfrak{R} is an equivalence relation on Z . This relation is called congruence modulo m . This relation has m distinct equivalence classes namely, [0], [1], [2],, [m-1]. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are any three consecutive elements of an equivalence class of congruence modulo m , then $y^{2}=x z+m^{2}$. In particular, if $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are any three consecutive elements of [0], then there exists three consecutive integers a, b , c such that $\mathrm{x}=\mathrm{am}, \mathrm{y}=\mathrm{bm}, \mathrm{z}=\mathrm{cm}$ and $b^{2}=a c+1$. If $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n-1}, a_{n}, a_{n+1}(n \geq 2)$ are consecutive elements of an equivalence class of congruence modulo m, then
$a_{2}^{2}+a_{3}^{2}+$ \qquad $.+a_{n}^{2}=a_{1} a_{3}+a_{2} a_{4}+\ldots \ldots+a_{n-1} a_{n+1}+(n-1) m^{2}$

In particular, If $a_{1}, a_{2}, a_{3}, \ldots \ldots ., a_{n-1}, a_{n}, a_{n+1}(n \geq 2)$ are consecutive elements of [0], then there exists $\mathrm{n}+1$ consecutive integers $b_{1}, b_{2}, b_{3}, \ldots \ldots, b_{n-1}, b_{n}, b_{n+1}(n \geq 2)$ such that $a_{1}=b_{1} m, a_{2}=b_{2} m$, $\ldots \ldots \ldots, a_{n+1}=b_{n+1} m$ and $b_{2}^{2}+b_{3}^{2}+\ldots \ldots \ldots .+b_{n}^{2}=b_{1} b_{3}+b_{2} b_{4}+\ldots \ldots+b_{n-1} b_{n+1}+(n-1)$

PRELIMINARIES:

Definition 2.1: Any three consecutive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ satisfy $y^{2}=x z+1$. The order tripled ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is called consecutive triple. For a fixed positive integers $\mathrm{m}, ~(m x+r, m y+r, m z+r)$ where $r \in\{0,1,2, \ldots \ldots, m-1\}$ is called consecutive triple of congruence modulo m.
Definition 2.2:[1] A Pythagorean triple consists of three positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that $a^{2}+b^{2}=c^{2}$. Such a triple is commonly written as (a, b, c). If (a, b, c) is a Pythagorean triple, then so is ($k a, k b, k c$) for any positive integer k .

Definition 2.3:[2] We define a sequence of numbers as $f_{1}=1, f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 3$. The number f_{n} is called the nth Fibonacci's number.
We have the following properties of Fibonacci's numbers for each $n \in N$:
a. $f_{1}+f_{2}+\ldots \ldots .+f_{n}=f_{n+2}-1$
b. $f_{1}+f_{3}+\ldots \ldots . .+f_{2 n-1}=f_{2 n}$
c. $f_{2}+f_{4}+\ldots \ldots . .+f_{2 n}=f_{2 n+1}-1$
d. $f_{1}^{2}+f_{2}^{2}+\ldots \ldots .+f_{n}^{2}=f_{n} f_{n+1}$

MAIN RESULTS:

Theorem 3.1: $(3,4,5)$ is the only consecutive triple which is also Pythagorean triple.
Theorem 3.2: If $f_{1}, f_{2}, f_{3}, \ldots \ldots, f_{n}, \ldots . . .$. are the Fibonacci's numbers, then
$f_{1} f_{3}+f_{2} f_{4}+f_{3} f_{5}+\ldots \ldots .+f_{n-1} f_{n+1}= \begin{cases}f_{n} f_{n+1}-1, & \text { if } n \text { is odd } \\ f_{n} f_{n+1}, & \text { if } n \text { is even }\end{cases}$
Proof: If $f_{r-1}, f_{r}, f_{r+1}(\mathrm{r}>1)$ are three consecutive Fibonacci's numbers, then
$f_{r}^{2}= \begin{cases}f_{r-1} f_{r+1}+1, & \text { if } r \text { is odd } \\ f_{r-1} f_{r+1}-1, & \text { if } r \text { is even }\end{cases}$
Putting $r=2,3,4$, \qquad n and adding, we get
$f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+\ldots \ldots . .+f_{n}^{2}=\left\{\begin{array}{l}f_{1} f_{3}+f_{2} f_{4}+f_{3} f_{5}+\ldots \ldots .+f_{n-1} f_{n+1}, \text { if } n \text { is odd } \\ f_{1} f_{3}+f_{2} f_{4}+f_{3} f_{5}+\ldots \ldots \ldots .+f_{n-1} f_{n+1}, \text { if } n \text { even }\end{array}\right.$
Thus, if n is odd, then
$f_{1} f_{3}+f_{2} f_{4}+f_{3} f_{5}+\ldots \ldots .+f_{n-1} f_{n+1}=f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+\ldots \ldots .+f_{n}^{2}$
$=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+\ldots \ldots . .+f_{n}^{2}-1$ since $f_{1}=1$
$=f_{n} f_{n+1}-1$, since $f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+\ldots \ldots . .+f_{n}^{2}=f_{n} f_{n+1}$
And if n is even, then
$f_{1} f_{3}+f_{2} f_{4}+f_{3} f_{5}+\ldots \ldots .+f_{n-1} f_{n+1}-1=f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+\ldots \ldots .+f_{n}^{2}$
$\Rightarrow f_{1} f_{3}+f_{2} f_{4}+f_{3} f_{5}+\ldots \ldots .+f_{n-1} f_{n+1}=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+\ldots \ldots .+f_{n}^{2}$, since $f_{1}=1$
$=f_{n} f_{n+1}$, since $f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+\ldots \ldots . .+f_{n}^{2}=f_{n} f_{n+1}$
Hence we can conclude that
$f_{1} f_{3}+f_{2} f_{4}+f_{3} f_{5}+\ldots \ldots .+f_{n-1} f_{n+1}= \begin{cases}f_{n} f_{n+1}-1, & \text { if } n \text { is odd } \\ f_{n} f_{n+1}, & \text { if } n \text { is even }\end{cases}$
Theorem 3.3: If $x_{1}, x_{2}, x_{3}, \ldots \ldots ., x_{n-1}, x_{n}, x_{n+1}(n \geq 2)$ are any consecutive elements of any equivalence class ofcongruence modulo m for any positive integers m , then
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots \ldots .+x_{n}^{2} \geq\left(x_{1} x_{3}+x_{2} x_{4}+x_{3} x_{5}+\ldots \ldots .+x_{n-1} x_{n+1}\right)+1$
Proof: Let $x_{1}, x_{2}, x_{3}, \ldots \ldots ., x_{n-1}, x_{n}, x_{n+1}(n \geq 2)$ be any consecutive elements of any equivalence class ofcongruence modulo m for any positive integers m . Then
$x_{2}^{2}+x_{3}^{2}+\ldots \ldots \ldots .+x_{n}^{2}=x_{1} x_{3}+x_{2} x_{4}+\ldots \ldots+x_{n-1} x_{n+1}+(n-1) m^{2}$
$\Rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+$ \qquad $+x_{n}^{2}-\left(x_{1} x_{3}+x_{2} x_{4}+\ldots \ldots+x_{n-1} x_{n+1}\right)=x_{1}^{2}+(n-1) m^{2}$
$\geq 0+1.1^{2}$ as $x_{1}^{2} \geq 0, n-1 \geq 1, m \geq 1$
$\Rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots \ldots .+x_{n}^{2} \geq\left(x_{1} x_{3}+x_{2} x_{4}+x_{3} x_{5}+\ldots \ldots .+x_{n-1} x_{n+1}\right)+1$
Remark: For $m=1, n=2$ and $x_{1}=0$ the equality holds.
Theorem 3.4: If x, y, z are three consecutive elements of any equivalence class ofcongruence modulo m for any positive integers m , then

$$
y^{2}=\left\{\begin{array}{c}
m^{2}(\bmod x), \text { if } m^{2}<x \\
r(\bmod x), \text { if } m^{2}>x
\end{array}\right.
$$

where $0 \leq r<x$. Similar result holds for modulo z .
Proof: Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be three consecutive elements of any equivalence class ofcongruence modulo m for any positive integers m . Then
$y^{2}=x z+m^{2}$
$\Rightarrow y^{2} \equiv m^{2}(\bmod x)$ and $y^{2} \equiv m^{2}(\bmod z)$
If $m^{2}<x$, then $y^{2} \equiv m^{2}(\bmod x)$
If $m^{2}>x$, then by division algorithm, there exists unique integers q and r such that $m^{2}=x q+r$ where $0 \leq r<x$. Therefore

$$
y^{2} \equiv(x q+r)(\bmod x)
$$

$\Rightarrow y^{2} \equiv r(\bmod x)$
Hence $y^{2}= \begin{cases}m^{2}(\bmod x), & \text { if } m^{2}<x \\ r(\bmod x), & \text { if } m^{2}>x\end{cases}$
where $0 \leq r<x$. Similar, we can prove the same result for modulo z .
Lemma (Lagrange's theorem) 3.5:[1] If p is a prime and $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ where p does not divide a_{n}, is a polynomial of degree $n \geq 1$ with integral coefficients, then the congruence $f(x) \equiv 0(\bmod p)$ has at most n incongruent solutions modulo p .

Lemma 3.6:[1] If p is a prime number and $d \mid p-1$, then the congruence $x^{d} \equiv 1(\bmod p)$ has exactly d incongruent solutions modulo p .

Theorem 3.7: If p is an odd prime and the quadratic congruence $a x^{2}+b x+c \equiv 0(\bmod p)$ can be write of the form $(2 a x+b)^{2} \equiv n^{2}(\bmod p)$ where $n^{2}=b^{2}-4 a c$, then $2 a x_{1}+b, p, 2 a x_{2}+b$ are three consecutive elements of some equivalence class ofcongruence modulo n and x_{1}, x_{2} are incongruent solutions of the quadratic congruence.

Proof: Consider the quadratic congruence

$$
a x^{2}+b x+c \equiv 0(\bmod p)--\cdots-\cdots-------(\text { i) }
$$

Since p is an odd prime, $\operatorname{gcd}(4 a, p)=1$. Thus given congruence equivalent to
$4 a\left(a x^{2}+b x+c\right) \equiv 0(\bmod p)$
$\Rightarrow(2 a x+b)^{2} \equiv\left(b^{2}-4 a c\right)(\bmod p)$
Putting $n^{2}=b^{2}-4 a c$ to get
$\Rightarrow(2 a x+b)^{2} \equiv n^{2}(\bmod p)-$
Let $p \in[r]$ for some $r \in\{0,1,2, \ldots \ldots ., n-1\}$. Then $p=n l+r$ for some positive integer l.
We claim that $2 a x_{1}+b=n(l-1)+r, 2 a x_{2}+b=n(l+1)+r$ are satisfy the congruence (ii). For that
$\left(2 a x_{1}+b\right)^{2}-n^{2}=\{n(l-1)+r\}^{2}-n^{2}$
$=(n l+r)^{2}-2 a(n l+r)$
$=p^{2}-2 a p$
$=p(p-2 a)$
$\therefore \quad\left(2 a x_{1}+b\right)^{2} \equiv n^{2}(\bmod p)$
Similarly, we can show
$\left(2 a x_{2}+b\right)^{2} \equiv n^{2}(\bmod p)$
Therefore $x \equiv x_{1}, x_{2}(\bmod p)$ are solutions of the quadratic congruence (i).
Lastly, we show x_{1} and x_{2} are incongruent solutions modulo p . If possible, let
$x_{1} \equiv x_{2}(\bmod p)$
$\Rightarrow 2 a x_{1}+b \equiv 2 a x_{2}+b(\bmod p)$
$\Rightarrow n(l-1)+r \equiv n(l+1)+r(\bmod p)$
$\Rightarrow p \mid 2 n$
$\Rightarrow p \mid n$ as p is an odd prime.

Which contradicts the fact that p does not divide n. Therefore, our assumption is wrong. Thus x_{1} and x_{2} are incongruent solutions modulo p .

Example 3.8: Consider the congruence

$$
x^{2}+7 x+10 \equiv 0(\bmod 11)
$$

Here $\mathrm{a}=1, \mathrm{~b}=7, \mathrm{c}=10$ and $\mathrm{p}=11$
We have $(4 a, p)=(4.1,11)=1$, so the given congruence equivalent to
$4 x^{2}+28 x+40 \equiv 0(\bmod 11)$
$\Rightarrow(2 x+7)^{2} \equiv 3^{2}(\bmod 11)$
Here $p=3.3+2 \in[2]$, when [2] is an equivalence class ofcongruence modulo 3. Applying theorem (3.8), we have
$2 x_{1}+7 \equiv 3.2+2(\bmod 11)$ and $2 x_{2}+7 \equiv 3.4+2(\bmod 11)$
$\Rightarrow 2 x_{1} \equiv 1(\bmod 11)$ and $2 x_{2} \equiv 7(\bmod 11)$
Therefore $x \equiv 6,9(\bmod 11)$ are two incongruent solutions of the quadratic congruence.
Corollary 3.9: If p is an odd prime, then a and $p-a$ are incongruent solutions of the congruence $x^{2} \equiv a^{2}(\bmod p)$. In this case $p-a, p, p+a$ are consecutive elements of some equivalence of congruencemodulo a.

REFERENCES:

1. David M. Burton (1980), Elementary Number Theory, Mac Graw Hill.
2. R. Malathi, C. Yogeesvaran, Fibonacci sequence and its special properties, International Journal of Scientific research, 6(2017), 544-546.
